Navigating the Geography of Regional Disparities: Market Access and the Core-Periphery Divide

Gabrielle Gambuli

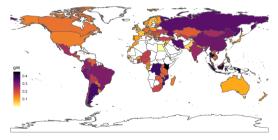
CY Cergy Paris Université, THEMA ESSEC Business School

September 2023

Introduction

Does proximity to markets explain regional development disparities within countries?

- What is known?
 - ▶ Yes, it has an impact
 - Theory : international trade wage equation
 - ★ wages related to market access/potential
 - * Fujita, Krugman and Venables (1999), Redding and Venables (2004), Head and Mayer (2011)
 - Empirical verification
 - * at the country level, to explain between country variation (Redding and Venables, 2004; Head and Mayer, 2011)
 - ★ at the regional level, to explain within country variation (Hanson, 2005; Brakman, Garretsen and Marrewijk, 2009)


Introduction

Does proximity to markets explain regional development disparities within countries?

- Goal : provide a falsification test at the regional level within countries worldwide
 - use extensive regional dataset with geographic and education controls
 - provide a market access index where distance is considering geographic typologies (land & water surfaces), as well as cultural and economic proximity
 - * recognize important role of maritime transportation into international trade
 - "around 80% of global trade by volume and over 70% of global trade by value are carried by sea and are handled by ports worldwide" (The Review of Maritime Transport 2018, UNCTAD)
 - investigate heterogenous effects : the core VS the periphery, developed VS developing countries

Motivation : Why do we care about regional disparities?

- Economic and social inequality
 - unequal access to ressources (education, healthcare), employment opportunities
- Hurt social cohesion
 - rise protest movements and voting decisions cleavage Brexit (Loss, McCann, Springford and Thissen, 2017), election of Trump in the US (Rodriguez-Pose, Lee & Lipp, 2020), far-right and -left political parties ascendance in European countries (Dijsktra, Poelman and Rodriguez-Pose, 2020)

Figure 1: Gini index in the regional income per capita in 2005

Theoretical fundations

- The International Trade Wage Equation
 - Fujita, Krugman and Venables (1999)
 - * general equilibrium model with international trade (economies of scale) and monopolistic competition (differentiated goods, large number of firms, profit maximization)
 - $\star\,$ low transportation costs to demand \rightarrow attract firms \rightarrow competition for labor \rightarrow higher wages
 - ▶ Redding and Venables (2004), Head and Mayer (2011): gravity-based
- 2 Agglomeration economies and growth
 - Baldwin and Martin (2004)
 - technology/knowledge spillovers
- The Lucas-Lucas Model
 - Gennaioli, LaPorta, Lopez-de-Silvanez and Shleifer (2013)
 - \star emphasize the role of human capital and human capital externalities in wage disparities
 - $\star\,$ higher human capital \rightarrow higher marginal productivity \rightarrow higher wages
- Key assumption: (1) immobile labor (2) and (3) mobile labor

Data

- Gennaioli, LaPorta, Lopez-de-Silvanez and Shleifer (2013) extensive regional dataset
 - \blacktriangleright covers 70% of the world surface and 90% of the world GDP as of 2005
 - variables : GDP, education, population size, temperature, proximity to the ocean, natural resources, culture, institutions quality

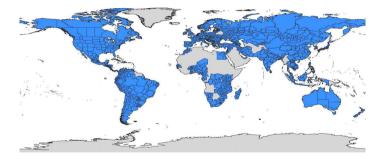


Figure 2: Gennaioli et al. (2013) regional dataset

Regional Market Potential

 The intensity of potential trade interactions between regions is proportional to their market size weighted by their proximity

$$\mathsf{MP}_{i} = \sum_{j \neq i} y_{j} \frac{\tilde{y}_{j}}{\tilde{y}_{\max,c_{j}}} \tau_{ij} + b \times y_{i} \frac{\tilde{y}_{i}}{\tilde{y}_{\max,c_{i}}} \tau_{ii}$$
(1)

where y the GDP, ỹ the GDP per capita, τ_{ij} the trade costs, τ_{ii} the internal transport costs, b the border effect

$$\tau_{ii} = \left[\frac{2}{3}\sqrt{\frac{\operatorname{area}_i}{\pi}}\right]^{-1} \tag{2}$$

Regional Market Potential

• Two candidates for trade costs τ_{ij} :

$$\tau_{ij}^{(1)} = \text{haversine distance}_{ij}^{\hat{\beta}_1} \times \qquad (3)$$
$$\left[\mathbbm{1}_{\{c_i \neq c_j\}} e^{\hat{\beta}_2 \mathbbm{1}_{\text{language}_{ij}} + \hat{\beta}_3 \mathbbm{1}_{\text{contig}_{ij}} + \hat{\beta}_4 \mathbbm{1}_{\text{colony}_{ij}} + \hat{\beta}_5 \mathbbm{1}_{\text{RTA}_{ij}} + \hat{\beta}_6 \mathbbm{1}_{\text{currency}_{ij}} + \mathbbm{1}_{\{c_i = c_j\}} e^{\hat{\beta}_7}\right]$$

$$\tau_{ij}^{(2)} = \text{shipment distance}_{ij} \times \qquad (4)$$

$$\left[\mathbbm{1}_{\{c_i \neq c_j\}} e^{\hat{\beta}_2 \mathbbm{1}_{\text{language}_{ij}} + \hat{\beta}_3 \mathbbm{1}_{\text{contig}_{ij}} + \hat{\beta}_4 \mathbbm{1}_{\text{colony}_{ij}} + \hat{\beta}_5 \mathbbm{1}_{\text{RTA}_{ij}} + \hat{\beta}_6 \mathbbm{1}_{\text{currency}_{ij}} + \mathbbm{1}_{\{c_i = c_j\}} e^{\hat{\beta}_7}\right]$$

Regional Market Potential

• Two candidates for trade costs τ_{ij} :

$$\tau_{ij}^{(1)} = \text{haversine distance}_{ij}^{\hat{\beta}_{1}} \times \left[\mathbbm{1}_{\{c_{i}\neq c_{j}\}}e^{\hat{\beta}_{2}\mathbbm{1}_{\text{language}_{ij}}+\hat{\beta}_{3}\mathbbm{1}_{\text{contig}_{ij}}+\hat{\beta}_{4}\mathbbm{1}_{\text{colony}_{ij}}+\hat{\beta}_{5}\mathbbm{1}_{\text{RTA}_{ij}}+\hat{\beta}_{6}\mathbbm{1}_{\text{currency}_{ij}}+\mathbbm{1}_{\{c_{i}=c_{j}\}}e^{\hat{\beta}_{7}}\right]$$

$$(3)$$

$$\tau_{ij}^{(2)} = \begin{bmatrix} \kappa_{io}^{\hat{\gamma}_1} \kappa_{od}^{\hat{\gamma}_2} \kappa_{dj}^{\hat{\gamma}_3} \mathbb{1}_{\text{maritime route}} + \kappa_{ij}^{\hat{\gamma}_4} (1 - \mathbb{1}_{\text{maritime route}}) \end{bmatrix} \times \qquad (4)$$
$$\begin{bmatrix} \mathbb{1}_{\{c_i \neq c_j\}} e^{\hat{\beta}_2 \mathbb{1}_{\text{language}_{ij}} + \hat{\beta}_3 \mathbb{1}_{\text{contig}_{ij}} + \hat{\beta}_4 \mathbb{1}_{\text{colony}_{ij}} + \hat{\beta}_5 \mathbb{1}_{\text{RTA}_{ij}} + \hat{\beta}_6 \mathbb{1}_{\text{currency}_{ij}} + \mathbb{1}_{\{c_i = c_j\}} e^{\hat{\beta}_7} \end{bmatrix}$$

- where κ is a fine scale grid shortest path example
- o and d are the origin and destination ports data: World Port Index
- $1_{\text{maritime route}} = 1$ if *i* and *j* are not accessible via land transportation alone, zero otherwise
- all coefficients are estimated using CEPII gravity database gravity equation

Empirical Model

• Gennaioli et al. (2013) model:

 $\ln \text{GDPpc}_{i} = \alpha_{1} \text{ inv. dist. } \operatorname{coast}_{i} + \alpha_{2} \text{ education}_{i} + \alpha_{3} \ln \text{population size}_{i} + (5)$ $\alpha_{4} \text{ temperature}_{i} + \alpha_{5} \ln \text{ oil } \operatorname{pc}_{i} + \zeta_{c(i)} + u_{i}$

• This paper's model:

$$\ln \text{GDPpc}_{i} = \alpha_{0} \ln \text{MP}_{i}^{(h,s)} + \alpha_{1} \text{ inv. dist. } \text{port}_{i} + \alpha_{2} \text{ education}_{i} + (6)$$

$$\alpha_{3} \ln \text{population density}_{i} + \alpha_{4} \text{ temperature}_{i} + \alpha_{5} \ln \text{ oil } \text{pc}_{i} + \zeta_{c(i)} + u_{i}$$

- Country fixed effects ζ_{c(i)} allows within-country investigation and controlling for all countries' unobservable characteristics
- To avoid endogeneity: use the non-local and the foreign market potential indexes as proxy variables

Baseline Results

	(1)	(2)	(3)	(4)	(5)	(6)
market potential	0.11***	0.09***	0.06**	0.05*	0.07	0.00
	(0.03)	(0.03)	(0.02)	(0.03)	(0.07)	(0.09)
inv. dist. port	0.14**	0.13**	0.14**	0.13**	0.14**	0.13**
	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)
years education	0.28***	0.28***	0.28***	0.28***	0.28***	0.28***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
population density	-0.00	0.01	0.01	0.01	0.01	0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
temperature	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
oil per cap.	0.19***	0.19***	0.19***	0.19***	0.19***	0.19***
	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
Num. obs.	1464	1464	1464	1464	1464	1464
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Num. groups: code	103	103	103	103	103	103
Adj. R ² (proj model)	0.43	0.42	0.42	0.42	0.42	0.42
Regressor	$MP^{(h)}$	$MP^{(s)}$	NLMP ^(h)	$NLMP^{(s)}$	FMP ^(h)	FMP ^(s)
*** **		- *	01 D I			

 $^{***}p < 0.01; \ ^{**}p < 0.05; \ ^*p < 0.1.$ Robust standard errors adjusted for clustering on each country are in parentheses.

Table 1: Regional Development and Market Potential (2005) education endogeneity

Baseline Results: Main Take-Away

- Falsification test: elasticity coefficient, $\alpha_0 = [0.05; 0.1]$, is consistent with theory and empirical literature
 - Theory: should be equal to ¹/_{βσ}, with β the income labor share and σ the elasticity of substitution between varieties.
 - ***** Reshef & Santoni (2023): $\beta_{2007} = [0.3; 0.7]$
 - * Fontagné, Guimbard & Orefice (2020): $\sigma = [5; 20]$
 - Expected $\alpha_0 = [0.07; 0.7]$

The Core-Periphery Divide

• Clustering algorithm to identify core, semi-periphery and periphery regions within countries, with respect to their GDP

$$\ln \text{GDPpc}_{i} = \delta_{1} \ln \text{MP}_{i}^{(h,s)} + \delta_{2} \ln \text{MP}_{i}^{(h,s)} \times \mathbb{1}_{\text{semi-periphery}} + \\ \delta_{3} \ln \text{MP}_{i}^{(h,s)} \times \mathbb{1}_{\text{periphery}} + \sum_{k=1}^{5} \alpha_{k} X_{i}^{(k)} + \zeta_{c(i)} + u_{i}$$

- δ_1 elasticity coefficients for core regions
- > δ_3 the difference in the elasticity coefficients between core and periphery regions

Stylized facts

On average, within countries, periphery regions have a 62% lower GDPpc than core regions, and a 30% lower market potential.

(7)

The Core-Periphery Divide Results

	(1)	(2)	(3)	(4)	(5)	(6)
market potential	0.12***	0.10***	0.08***	0.07***	0.09	-0.00
	(0.03)	(0.03)	(0.03)	(0.03)	(0.06)	(0.08)
market potential $ imes \mathbb{1}_{semi-periphery}$	-0.01^{***}	-0.01^{***}	-0.01^{***}	-0.01^{***}	-0.01^{***}	-0.01^{***}
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
market potential $ imes 1_{ extsf{periphery}}$	-0.02^{***}	-0.02^{***}	-0.02^{***}	-0.02^{***}	-0.02^{***}	-0.02^{***}
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Num. obs.	1460	1460	1460	1460	1460	1460
Control variables	Yes	Yes	Yes	Yes	Yes	Yes
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Num. groups: code	101	101	101	101	101	101
Adj. R ² (proj model)	0.47	0.47	0.47	0.47	0.46	0.46
Regressor	$MP^{(h)}$	$MP^{(s)}$	NLMP ^(h)	$NLMP^{(s)}$	FMP ^(h)	FMP ^(s)

*** p < 0.01; ** p < 0.05; * p < 0.1. Robust standard errors adjusted for clustering on each country are in parentheses.

Table 2: Regional Development and Market Potential (2005) - Core and Periphery

Core-Periphery Divide Results: Main Take-Away

- The periphery is less sensitive than the core
 - suggests higher β and/or higher σ
- Policy implication
 - would require substantial investments in transport infrastructure to foster regional development in the periphery and narrow the gap with the core.

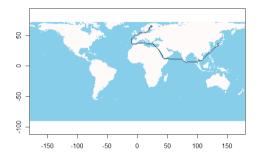
Conclusion: Main Take-Aways

- Falsification test:
 - elasticity coefficient, $\alpha_0 = [0.05; 0.1]$, is consistent with theory and empirical literature
- New result:
 - heterogenous elasticity within countries: the periphery is less sensitive than the core
- Results are robust to panel data (1995, 2000, 2005)
- Other results:
 - ▶ results led by middle-income countries than in high- and low-income countries.
 - centrality/proximity to foreign cores hurts the national periphery results
 - \star Is it capturing import competition? Is the periphery a consistent loser from trade?
 - $\star\,$ Effect significant for centrality to foreign cores with no FTA \rightarrow Is it depicting the border shadow?

Thank you for your attention

Gabrielle Gambuli

⊠ gabrielle.gambuli@cyu.fr ∰ gambuligabrielle.github.io


Shipment distance example

• i = Guildford, o = Portsmouth, d = Le Havre, j = Cergy

Figure 3: Guildford to Cergy back

Maritime distance examples **back**

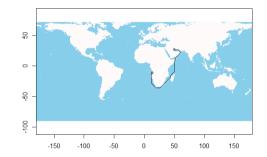


Figure 4: Finland to Japan

Figure 5: Saudi Arabia to Angola

ETSG 2023

Gravity Equation

• The gravity equation is estimated in cross-section (2005) as follows:

$$\ln \tilde{\mathsf{TF}}_{ij} = \beta_1 \ln \operatorname{dist}_{ij}^{(\operatorname{haversine})} + \beta_2 \mathbb{1}_{\operatorname{lang}_{ij}} + \beta_3 \mathbb{1}_{\operatorname{contig}_{ij}} + \beta_4 \mathbb{1}_{\operatorname{colony}_{ij}} + \beta_5 \mathbb{1}_{\operatorname{RTA}_{ij}} + \beta_6 \mathbb{1}_{\operatorname{curr}_{ij}} + \delta_i + \delta_j + \epsilon_{ij}$$

$$(8)$$

$$\begin{aligned} \ln \tilde{\mathsf{TF}}_{ij} &= \gamma_1 \ln \mathsf{dist}_{io}^{(\mathsf{land},\mathsf{ from exporter to origin port)}} \mathbb{1}_{\mathsf{maritime route}} \\ &+ \gamma_2 \ln \mathsf{dist}_{od}^{(\mathsf{sea, between ports)}} \mathbb{1}_{\mathsf{maritime route}} \\ &+ \gamma_3 \ln \mathsf{dist}_{dj}^{(\mathsf{land},\mathsf{ from destination port to importer)}} \mathbb{1}_{\mathsf{maritime route}} \\ &+ \gamma_4 \ln \mathsf{dist}_{ij}^{(\mathsf{land})} (1 - \mathbb{1}_{\mathsf{maritime route}}) \\ &+ \beta_2 \mathbb{1}_{\mathsf{lang}_{ij}} + \beta_3 \mathbb{1}_{\mathsf{contig}_{ij}} + \beta_4 \mathbb{1}_{\mathsf{colony}_{ij}} + \beta_5 \mathbb{1}_{\mathsf{RTA}_{ij}} + \beta_6 \mathbb{1}_{\mathsf{curr}_{ij}} + \delta_i + \delta_j + \epsilon_{ij} \end{aligned}$$

•
$$\tilde{\mathsf{TF}}_{ij} = \mathsf{TF}_{c_i c_j} \times \frac{y_i}{y_{c_i}} \times \frac{y_j}{y_{c_j}}$$

• $\hat{\beta}_1 = -1.18$; $\hat{\beta}_2 = 0.66$; $\hat{\beta}_3 = 1.12$; $\hat{\beta}_4 = 1.37$; $\hat{\beta}_5 = 0.47$; $\hat{\beta}_6 = 0.79$; $\hat{\beta}_7 = 1.96$; $\hat{\gamma}_1 = -0.07$; $\hat{\gamma}_2 = -0.96$; $\hat{\gamma}_3 = -0.06$; $\hat{\gamma}_4 = -1.00$. Deck

Gabrielle Gambuli

(9)

Education proxy: average eduction of old (+65 years old)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
market potential	0.16**	0.16**	0.11**	0.11**	0.03	-0.02
	(0.06)	(0.07)	(0.05)	(0.06)	(0.12)	(0.10)
education $+65$ years old	0.22***	0.22***	0.22***	0.22***	0.22***	0.22***
	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.04)
Num. obs.	607	607	607	607	607	607
Control variables	Yes	Yes	Yes	Yes	Yes	Yes
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Num. groups: code	39	39	39	39	39	39
Adj. R ² (proj model)	0.38	0.37	0.37	0.37	0.36	0.36
Regressor	$MP^{(h)}$	$MP^{(s)}$	NLMP ^(h)	NLMP ^(s)	FMP ^(h)	FMP ^(s)

*** p < 0.01; ** p < 0.05; *p < 0.1. Robust standard errors adjusted for clustering on each country are in parentheses.

Table 3: Regional development and Market Potential - Education of old (back)

Centrality to cores

	(1)	(2)
centrality ^{domestic cores} $\times 1(\gamma_g = \text{core})$	0.31***	0.31**
	(0.11)	(0.15)
centrality ^{domestic cores} $\times 1(\gamma_g = \text{semi-periphery})$	0.02	0.02
	(0.02)	(0.02)
centrality ^{domestic cores} $\times 1(\gamma_g = periphery)$	0.05**	0.06*
	(0.02)	(0.03)
centrality foreign cores $\times 1(\gamma_g = \text{core})$	-0.18	
	(0.13)	
centrality ^{foreign cores} $\times 1(\gamma_g = \text{semi-periphery})$	-0.32^{**}	
	(0.14)	
centrality ^{foreign cores} $ imes$ 1(γ_g = periphery)	-0.33**	
	(0.15)	
$centrality^{foreign} \stackrel{cores, no FTA}{\sim} \mathfrak{l}(\gamma_g = core)$		-0.23
		(0.25)
centrality ^{foreign cores, no FTA} \times 1(γ_g = semi-periphery)		-0.30
		(0.19)
$centrality^{foreign cores, no FTA} imes \mathbb{1}(\gamma_g = periphery)$		-0.30^{*}
		(0.15)
centrality ^{foreign cores, FTA} $ imes$ 1(γ_g = core)		-0.06
		(0.12)
$centrality^{foreign cores, FTA} imes 1(\gamma_g = semi-periphery)$		-0.11
		(0.11)
$centrality^{foreign cores, FTA} imes \mathbb{1}(\gamma_{\mathbf{g}} = periphery)$		-0.12
		(0.12)
Num. obs.	1460	1392
Num. groups: code	101	97
Adj. R ² (proj model)	0.32	0.33

***p < 0.01; **p < 0.05; *p < 0.1. Robust standard errors adjusted for clustering on each country are in parentheses.

Table 4: Regional Development, the Core and Periphery, and Centrality to cores Lack

Gabrielle Gambuli

ETSG 2023